Robust Circadian Rhythm and Parathyroid Hormone-Induced Resetting during Hypertrophic Differentiation in ATDC5 Chondroprogenitor Cells

نویسندگان

  • Toshihiro Hosokawa
  • Yoshiki Tsuchiya
  • Naoki Okubo
  • Tatsuya Kunimoto
  • Yoichi Minami
  • Hiroyoshi Fujiwara
  • Yasuhiro Umemura
  • Nobuya Koike
  • Toshikazu Kubo
  • Kazuhiro Yagita
چکیده

Cartilage tissues possess intrinsic circadian oscillators, which influence chondrocyte function and chondrocyte specific gene expression. However, it is not fully understood how chondrogenesis influences the circadian clock, and vice versa. Thus, we established ATDC5 cells which were stably transfected with the Bmal1:luc reporter and revealed robust circadian rhythms in ATDC5 cells during differentiation. Moreover, the circadian clock in ATDC5 cells was strongly reset by PTH in a circadian time-dependent manner. This assay system is expected to be useful for investigating the role of the circadian clock in chondrogenic differentiation and the precise molecular mechanisms underlying PTH action on the chondrocyte circadian clock.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chondrocyte differentiation is a fundamental process during endochondral ossification

process during endochondral ossification. Retinoic acid (RA) has been shown to regulate this process, however, the mechanisms underlying RA regulation of chondrogenesis are not clearly understood. Chondroprogenitor cells, ATDC5 have been shown to be a useful in vitro model for examining the multiple step differentiation of chondrocytes. The present study investigated the mechanisms underlying R...

متن کامل

Chondrogenic differentiation of clonal mouse embryonic cell line ATDC5 in vitro: differentiation-dependent gene expression of parathyroid hormone (PTH)/PTH-related peptide receptor

The regulatory role of parathyroid hormone (PTH)/PTH-related peptide (PTHrP) signaling has been implicated in embryonic skeletal development. Here, we studied chondrogenic differentiation of the mouse embryonal carcinoma-derived clonal cell line ATDC5 as a model of chondrogenesis in the early stages of endochondral bone development. ATDC5 cells retain the properties of chondroprogenitor cells, ...

متن کامل

Proper expression of helix-loop-helix protein Id2 is important to chondrogenic differentiation of ATDC5 cells.

The process of chondrogenesis can be mimicked in vitro by insulin treatment of mouse ATDC5 chondroprogenitor cells. To identify novel factors that are involved in the control of chondrogenesis, we carried out a large-scale screening through retroviral insertion mutagenesis and isolated a fast-growing ATDC5 clone incapable of chondrogenic differentiation. Inverse-PCR analysis of this clone revea...

متن کامل

Ascorbate-enhanced chondrogenesis of ATDC5 cells.

The ATDC5 cell line exhibits the multistep chondrogenic differentiation observed during endochondral bone formation. However, it takes up to two months to complete the process of cell expansion, insulin addition to promote differentiation and further changes in culture conditions effectively to induce hypertrophy. We sought to produce consistent chondrogenesis with significant hypertrophic diff...

متن کامل

Differential expressions of BMP family genes during chondrogenic differentiation of mouse ATDC5 cells.

Clonal cell line ATDC5 enables the monitoring of the early- and late-phase chondrogenic differentiation in a single culture. Undifferentiated ATDC5 cells differentiate into type II collagen expressing chondrocytes through a cellular condensation stage (early-phase differentiation) and then to type X collagen-expressing hypertrophic chondrocytes (late-phase differentiation). Progression of cellu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2015